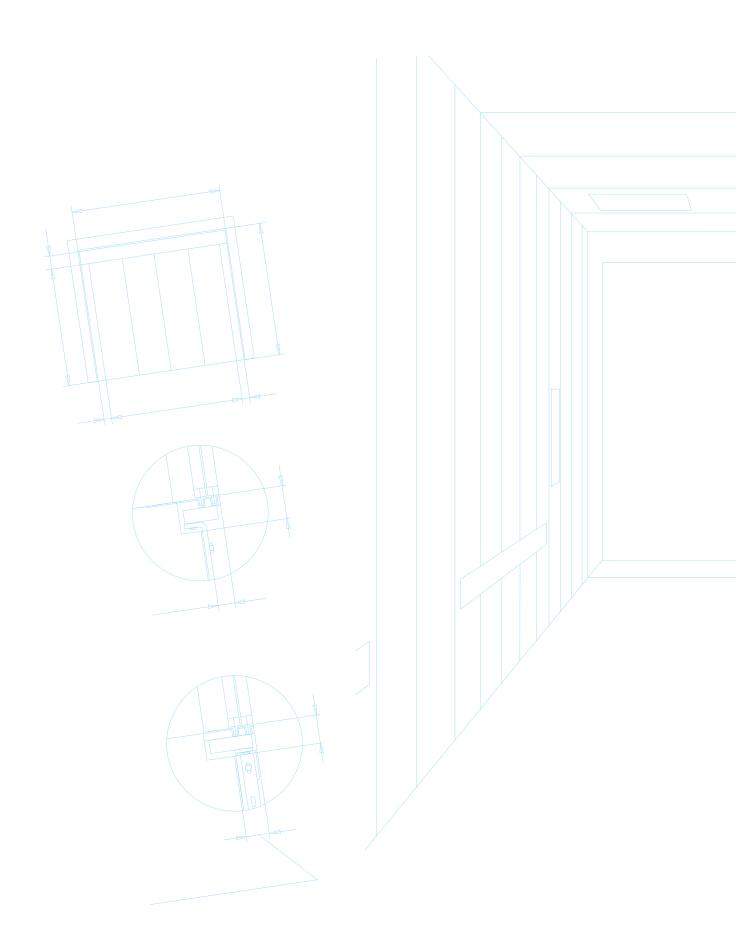


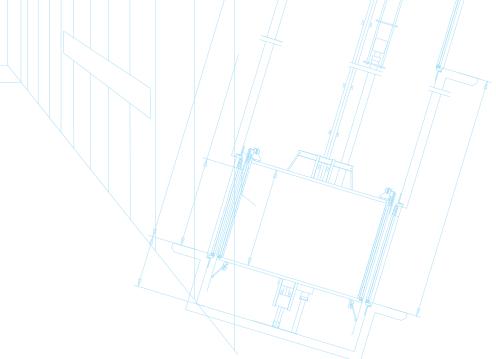
Лифты QH

грузопассажирские, грузовые и автомобильные модели MIH/MDH



ET-405 V.04 28/01/13

TEXHUYECKUE XAPAKTEPUCTUK



MUY FRAGIL

1. Общее описание

1.1. Применение

Лифты для вертикальной транспортировки больших грузов. Для трех видов применения:

QHP: Грузопассажирский лифт
Вертикальная транспортировка большого количества пассажиров и грузов в общественных зданиях, например: торговые центры, супермаркеты, аэропорты, офисные здания, гостиницы.

QHG: **Грузовой лифт**Вертикальная транспортировка тяжелых грузов.

QHV: Автомобильный лифт Вертикальная транспортировка автомобилей в жилых, офисных зданиях, общественных паркингах...

Обе представленные модели предлагают два различных технических решения для одного и того же применения. Разница заключается в следующем:

- MDH: Прямой привод (без направляющей для головки цилиндра, ограничителя скорости, ловителей, цепей подвески), что упрощает монтаж лифта. Эта модель поставляется для высоты подъема около 4 м. В этом диапазоне не используется модель MIH.
- **МІН:** Непрямой привод, дифференциальное соотношение 2:1, модель поставляется для высоты подъема от 3,7 до 20 м.

1.2. Стандарты

Разработаны и изготовлены на основании требований Директивы 95/16/СЕ на лифты и подъемные механизмы, с выполнением норматива EN 81-2 и Директивы 2004/108/СЕ по электромагнитной совместимости.

1.3. Характеристики

Грузопол	OHD: HOMMISTING	og r/n og 2000 n	2 6000 KE M	OKCHWO EL LI	20. 0000000	попо коб	MIII D
Грузоподъ-	QHP: номинальна соответствии с так				ая площадь	o HOJIA KAO	ины в
емность	QHG: номинальна				ная плоша	дь пола к	абины
/	в соответствии с						
	предусмотрены др						
	QHV: номинальна	ая г/п от 3500 д	до 5000. Ма	ксимальна	я площадь	пола каб	ины в
	соответствии с та	блицей 1.1. норм	іатива EN 81	-2			
			_/		9/2		
	Ном. нагрузка Q (кг)	1.500 2.000	2.500	3.000	3.50		
	Применение						
	Макс. пов. АхВ (м²)	≤ 4.8 ≤ 4.2 ≤ 6.6	5 ≤ 5.0 ≤ 8.6	≤ 5.8 ≤ 10.0	6 ≤ 6.6 ≤ 12.	.6 ≤ 12.6	
			///		// // //		
	Ном. нагрузка Q (кг)	4.000	4.300	4.500	5 	5.000	
	Применение						
	Макс. пов. АхВ (м²)	≤ 7.4 ≤ 14.6 ≤ 14	.6 ≤15.8 ≤ 8.	2 ≤ 16.6 ≤	16.6 ≤ 9.0	≤ 18.6 ≤ 18.	6
			<u> </u>			'	
	Ном. нагрузка Q (кг)	6.000					
	Применение				. 7		
	Макс. пов. АхВ (м²)	≤ 10.6 ≤ 22.6					
					<i>#</i> /		
	Для QHG максим	12 IL 12 IL 10 IL	PROME EDOUG	CCOD FOED	JOVIA IA BLIER	Wakia Ho E	0.000
		lalibhan i/ii bu e	SUCIVIA LIDUTE	CCOB HOLD	Varu VI/ Bbiil	изки не д	олжна г
	превышать 85% о			CCOB HOLD	y SKVI VI BBII Ç	лузки не д	ОЛЖНА
Скорость				CCOB HOTPS	узки и выгр	узки не д	ОЛЖНА
Скорость					узки и выгр	узки не д	ОЛЖНА
Скорость	превышать 85% о	т максимально д	Ном. нагрузка	Q (Kr)			ОЛЖНА
Скорость	превышать 85% о Примене- ние 1.500 2.	т максимально д .000 2.500 3.000	ОПУСТИМОЙ. Ном. нагрузка 3.500 4.00	Q (Kr)	4.500 5.000	6.000	ОЛЖНА
Скорость	Примене- ние 1.500 2.	т максимально д	ОПУСТИМОЙ. Ном. нагрузка 3.500 4.00	Q (Kr)		6.000	олжна
Скорость	Примене- ние 1.500 2.	т максимально д .000 2.500 3.000	Ном. нагрузка 3.500 4.00	Q (кг) 4.300	4.500 5.000	0 6.000 0,4 m/c	ОЛЖНА
Скорость	Примене- ние 1.500 2.	т максимально д .000 2.500 3.000 0,4 м/с и 0,6	Ном. нагрузка 3.500 4.00 6 м/с	Q (кг) 4.300	4.500 5.000 0,2 м/с и 0,3 м/с и 0,4 м/с	0 6.000 0,4 m/c	ОЛЖНА
	Применение 1.500 2.	т максимально д .000 2.500 3.000 0,4 м/с и 0,6	Ном. нагрузка 3.500 4.00 6 м/с	Q (кг) 00 4.300 0,2 м/с, 0	4.500 5.000 0,2 м/с и 0,3 м/с и 0,4 м/с	0 6.000 0,4 m/c	ОЛЖНА
Скорость	Примене- ние 1.500 2.	т максимально д .000 2.500 3.000 0,4 м/с и 0,6	Ном. нагрузка 3.500 4.00 6 м/с	Q (кг) 00 4.300 0,2 м/с, 0	4.500 5.000 0,2 м/с и 0,3 м/с и 0,4 м/с	0 6.000 0,4 m/c	ОЛЖНА
	Применение 1.500 2. До 6 остановок. МDH (прямой пр	Т Максимально д 000 2.500 3.000 0,4 м/с и 0,6 , 0,3 м/с, 0,4 м/с и 0,6	Ном. нагрузка 3.500 4.00 6 м/с 0,2 ты подъема д	Q (кг) 00 4.300 0,2 м/с, 0 м/с, 0,3 м/с и	4.500 5.000 0,2 м/с и 0,4 м/с 0,3 м/с и 0,4 м/с близительн	6.000 О,4 м/с	ІМОСТИ
Остановки	Применение 1.500 2. До 6 остановок. • МDН (прямой прот размеров при	т максимально д .000 2.500 3.000 0,4 м/с и 0,6 , 0,3 м/с, 0,4 м/с и 0,6 ивод): для высот	Ном. нагрузка 3.500 4.00 3.500 4.00 6 м/с 0,2 ты подъема да. Данная м	Q (кг) 00 4.300 0,2 м/с, 0 м/с, 0,3 м/с и 0 4 м, при одель все	4.500 5.000 0,2 м/с и 0,4 м/с 0,3 м/с и 0,4 м/с близительностда, когда	6.000 0,4 м/с с 0, в зависи это возм	імости і ожно ,
Остановки Высота	Применение 1.500 2. До 6 остановок. • МDН (прямой при поставляется д	т максимально д 2.500 3.000 0,4 м/с и 0,6 0,3 м/с, 0,4 м/с и 0,6 ивод): для высот иямка и пролета ля шахт с указа	Ном. нагрузка 3.500 4.00 м/с м/с м/с о данная манной высо	Q (кг) 00 4.300 0,2 м/с, 0 м/с, 0,3 м/с и 0 4 м, при 0дель всетой подъе	4.500 5.000 0,2 м/с и 0,4 м/с 0,3 м/с и 0,4 м/с близительностда, когда	6.000 0,4 м/с с 0, в зависи это возм	імости і ожно ,
Остановки Высота	Применение 1.500 2. До 6 остановок. МВН (прямой при поставляется д подъема обычн	т максимально д 2.500 3.000 0,4 м/с и 0,6 0,3 м/с, 0,4 м/с и 0,6 ивод): для высот иямка и пролета ля шахт с указа по поставляется	Ном. нагрузка 3.500 4.00 3.500 4.00 6 м/с 0,2 ты подъема да. Данная манной высон модель МІІ	Q (кг) 00 4.300 0,2 м/с, 0 м/с, 0,3 м/с и 0,4 м, при 0дель всетой подъе Н.	4.500 5.000 0,2 м/с и 0 0,3 м/с и 0,4 м/с 1 0,4 м/с близительне егда, когда ема. Для бо	0 6.000 0,4 м/с с 0, в зависи это возм	імости южно, ысоты
Остановки Высота	превышать 85% о Применение 1.500 2. До 6 остановок. МВН (прямой протоставляется длодъема обычними) МІН (непрямой примой приможения обычними)	т максимально д 000 2.500 3.000 0,4 м/с и 0,6 0,3 м/с, 0,4 м/с и 0,6 ивод): для высот иямка и пролета ля шахт с указа то поставляется ривод): от 3,7 до	Ном. нагрузка 3.500 4.00 3.500 4.00 6 м/с 0,2 ты подъема да. Данная манной высон модель МІІ	Q (кг) 00 4.300 0,2 м/с, 0 м/с, 0,3 м/с и 0,4 м, при 0дель всетой подъе Н.	4.500 5.000 0,2 м/с и 0 0,3 м/с и 0,4 м/с 1 0,4 м/с близительне егда, когда ема. Для бо	0 6.000 0,4 м/с с 0, в зависи это возм	імости южно, ысоты
Остановки Высота подъема	превышать 85% о Применение 1.500 2. До 6 остановок. • МDН (прямой прот размеров при поставляется добычновной высоты	т максимально д 000 2.500 3.000 0,4 м/с и 0,6 0,3 м/с, 0,4 м/с и 0,6 ивод): для высот иямка и пролета ля шахт с указа то поставляется ривод): от 3,7 до подъема.	Ном. нагрузка 3.500 4.00 6 м/с 6 м/с 7 и подъема да. Данная манной высов модель МІІ 20 м. Обрац	Q (кг) 00 4.300 0,2 м/с, 0 м/с, 0,3 м/с и 0 4 м, при 0 одель всетой подъе Н. цайтесь за	4.500 5.000 0,2 м/с и 0,4 м/с 1 0,4 м/с близительная когда, когда ема. Для бо	6.000 0,4 м/с с 0, в зависи это возм ольшей вь	имости и ожно , ы соты
Остановки Высота подъема	превышать 85% о Применение 1.500 2. До 6 остановок. • МDН (прямой прот размеров при поставляется д подъема обычней высоты 400 В ±5% 3-фа	т максимально д 2.500 3.000 0,4 м/с и 0,6 0,3 м/с, 0,4 м/с и 0,6 ивод): для высот иямка и пролета ля шахт с указа по поставляется ривод): от 3,7 до подъема. азное напряжен	Ном. нагрузка 3.500 4.00 3.500 4.00 6 м/с 6 м/с 1 подъема да. Данная манной высон модель МІІ 20 м. Обрацие, 50/60	Q (кг) 00 4.300 0,2 м/с, 0 м/с, 0,3 м/с и 0 4 м, при 0 6 м 6 м 6 м 6 м 6 м 6 м 6 м 6 м 6 м 6	4.500 5.000 0,2 м/с и 0,4 м/с 1 0,4 м/с близительноегда, когда ема. Для бо информаци цайтесь за	6.000 0,4 м/с с о, в зависи это возм ольшей вы ей относит	імости і ожно, і соты гельно ацией
Остановки Высота подъема	превышать 85% о Применение 1.500 2. До 6 остановок. МВН (прямой протоставляется добрана обычновныей высоты 400 В ±5% 3-фа относительно дета превышать высоты 400 в ±5% 3-фа относительно дета подъема обычносительно дета подъема обычносительно дета подъема обычносительно дета подъема обычносительно дета подъема объема объ	т максимально д 2.500 3.000 0,4 м/с и 0,6 0,3 м/с, 0,4 м/с и 0,6 ивод): для высот иямка и пролета ля шахт с указа по поставляется ривод): от 3,7 до подъема. азное напряжен ругого напряжен	Ном. нагрузка 3.500 4.00 3.500 4.00 6 м/с 6 м/с 1 подъема да. Данная манной высон модель МІІ 20 м. Обрацие, 50/60	Q (кг) 00 4.300 0,2 м/с, 0 м/с, 0,3 м/с и 0 4 м, при 0 6 м 6 м 6 м 6 м 6 м 6 м 6 м 6 м 6 м 6	4.500 5.000 0,2 м/с и 0,4 м/с 1 0,4 м/с близительноегда, когда ема. Для бо информаци цайтесь за	6.000 0,4 м/с с о, в зависи это возм ольшей вы ей относит	імости і ожно, і соты гельно ацией
Остановки Высота подъема Электропи- тание	превышать 85% о Применение 1.500 2. До 6 остановок. МВН (прямой прот размеров при поставляется добычновной высоты 400 В ±5% 3-фа относительно дубазовую комплект	т максимально д 000 2.500 3.000 0,4 м/с и 0,6 0,3 м/с, 0,4 м/с и 0,6 ивод): для высот иямка и пролета ля шахт с указа по поставляется ривод): от 3,7 до подъема. азное напряжен ругого напряжен	Ном. нагрузка 3.500 4.00 3.500 4.00 6 м/с 0,2 ты подъема да. Данная манной высот модель МІІ 20 м. Обрац	Q (кг) 00 4.300 0,2 м/с, 0 м/с, 0,3 м/с и 0,2 м/с обрацайтесь за 11 Обрацаю устрой	4.500 5.000 0,2 м/с и 0,3 м/с и 0,4 м/с 10,4 м/с близительноегда, когда ема. Для бо информаци цайтесь за	6.000 0,4 м/с о, в зависи это возм ольшей вы ей относит информа Y-D включ	імости і ожно, ы соты гельно а цией іено в
Остановки Высота подъема	превышать 85% о Применение 1.500 2. До 6 остановок. МВН (прямой протразмеров при поставляется добычновней высоты 400 В ±5% 3-фа относительно добазовую комплект Установка лифта	т максимально д ооо 2.500 3.000 о,4 м/с и о,6 о,3 м/с, о,4 м/с и о,6 ивод): для высот иямка и пролета ля шахт с указа по поставляется ривод): от 3,7 до подъема. азное напряжен ругого напряже гацию. в шахту осущес	Ном. нагрузка 3.500 4.00 6 м/с 6 м/с 7 л. Данная манной высот модель МІІ 20 м. Обрац	Q (кг) 00 4.300 0,2 м/с, 0 м/с, 0,3 м/с и 0,2 м/с обрацайтесь за 11 Обрацаю устрой	4.500 5.000 0,2 м/с и 0,3 м/с и 0,4 м/с 10,4 м/с близительноегда, когда ема. Для бо информаци цайтесь за	6.000 0,4 м/с о, в зависи это возм ольшей вы ей относит информа Y-D включ	імости і ожно, ы соты гельно а цией іено в
Остановки Высота подъема Электропи- тание	превышать 85% о Применение 1.500 2. До 6 остановок. МВН (прямой прот размеров при поставляется добычновной высоты 400 В ±5% 3-фа относительно дубазовую комплект	т максимально д ооо 2.500 3.000 о,4 м/с и о,6 о,3 м/с, о,4 м/с и о,6 ивод): для высот иямка и пролета ля шахт с указа по поставляется ривод): от 3,7 до подъема. азное напряжен ругого напряжен рацию. в шахту осущестые не требуют о	Ном. нагрузка о 3.500 4.00 б м/с о м/с о данная манной высот модель МІІ 20 м. Обрац	Q (кг) 00 4.300 0,2 м/с, 0 м/с, 0,3 м/с и одель всетой подъе Н. цайтесь за ц. Обращ омощью а	4.500 5.000 0,2 м/с и 0,3 м/с и 0,4 м/с 10,4 м/с близительноегда, когда ема. Для бо информаци цайтесь за иство типа	6.000 0,4 м/с 0, в зависи это возм ольшей вы ей относит информа Y-D включ	имости ножно, ысоты тельно ацией нено в

1.4 Размеры

Q (кг.)	S (M ²)	А (мм)	В (мм)	Н (мм)	PL (мм)	HL (мм)
2.000	≤ 4.2	1.500 - 2.400	1.600 - 3.300	2.200 - 2.700	1.200 - 2.600	2.000 - 2.700
2.500	≤ 5.0	1.500 - 2.400	1.600 - 3.300	2.200 - 2.700	1.200 - 2.700	2.000 - 2.700
3.000	≤ 5.8	1.600 - 2.400	1.700 - 3.300	2.200 - 2.700	1.200 - 2.700	2.000 - 2.700
3.500	≤ 6.6	1.600 - 2.400	1700 - 3.300	2.200 - 2.700	1.200 - 2.800	2.000 - 2.700
4.000	≤ 7.4	1.700 - 2.800	1.800 - 4.300	2.200 - 2.700	1.200 - 2.800	2.000 - 2.700
4.500	≤ 8.2	1.700 - 3.000	1.800 - 4.800	2.200 - 2.700	1.200 - 3.000	2.000 - 2.700
5.000	≤ 9.0	1.800 - 3.100	1.900 - 5.000	2.200 - 2.700	1.200 - 3.100	2.000 - 2.700
6.000	≤ 10.6	1.900 - 3.200	2.000 - 5.500	2.200 - 2.700	1.200 - 3.200	2.000 - 2.700
		/ //				

Q (кг.)	S (M²)	А (мм)	В (мм)	Н (мм)	PL (мм)	HL (мм)
1.500	≤ 4.8	1.500 - 3.000	1.600 - 4.600	2.200 - 2.850	1.200 - 3.000	2.000 - 2.800
2.000	≤ 6.6	1.500 - 4.100	1.600 - 4.600	2.200 - 2.850	1.200 - 4.100	2.000 - 2.800
2.500	≤ 8.6	1.500 - 4.500	1.600 - 4.600	2.200 - 2.850	1.200 - 4.500	2.000 - 2.800
3.000	≤ 10.6	1.600 - 4.500	1.700 - 6.000	2.200 - 2.850	1.200 - 4.500	2.000 - 2.800
3.500	≤ 12.6	1.600 - 4.500	1.700 - 6.000	2.200 - 2.850	1.200 - 4.500	2.000 - 2.800
4.000	≤ 14.6	1.700 - 4.500	1.800 - 6.000	2.200 - 2.850	1.200 - 4.500	2.000 - 2.800
4.500	≤ 16.6	1.700 - 4.500	1.800 - 7.000	2.200 - 2.850	1.200 - 4.500	2.000 - 2.800
5.000	≤ 18.6	1.800 - 4.500	1.900 - 7.000	2.200 - 2.850	1.200 - 4.500	2.000 - 2.800
6.000	≤ 22.6	1.900 - 4.500	2.000 - 7.000	2.200 - 2.850	1.200 - 4.500	2.000 - 2.800

			/			
Q (кг.)	S (M²)	А (мм)	В (мм)	Н (мм)	PL (мм)	HL (мм)
3.500	≤ 12.6	2.200 - 2.700	4.700 - 5.700	2.000 - 2.200	2.000 - 2.700	2.000 - 2.200
4.000	≤ 14.6	2.300 - 2.800	5.000 - 6.000	2.000 - 2.200	2.100 - 2.800	2.000 - 2.200
4.300	≤ 15.8	2.300 - 2.800	5.000 - 6.000	2.000 - 2.200	2.100 - 2.800	2.000 - 2.200
4.500	≤ 16.6	2.500 - 3.200	5.200 - 6.600	2.200 - 2.850	2.300 - 3.200	2.000 - 2.800
5.000	≤ 18.6	2.500 - 3.200	5.200 - 7.000	2.200 - 2.850	2.300 - 3.200	2.000 - 2.800

Размеры дверей в соответствии с нормативом.

Типы	PL (мм)*	HL (мм)*
	1.200 - 3.200	2.000 - 2.800
	1.500 - 3.200	2.000 - 2.800

^{*}Размеры дверей увеличиваются на 100 мм.

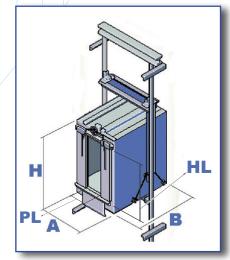


Рисунок 4: Габаритный чертеж кабины.

1.5 Установленная мощность

Расположенные ниже таблицы указывают номинальную мощность двигателя и линейное напряжение при полной нагрузке (400 В 3-фазное напряжение, 50 Гц), в зависимости от скорости, нагрузки и площади пола кабины. Все значения соответствуют кабине высотой 2200 мм. Эти значения могут увеличиться для более высоких кабин и более тяжелых дверей лифта. Следует учитывать расход электроэнергии на работу дополнительного оборудования, такого как охладители и нагреватели масла. Также следует принимать во внимание мощность освещения кабины и шахты, которые имеют отдельную схему.

	150	0 кг.		200	0 кг.			25	00 кг.	
	4,8	M ²	4,2 ו	M ²	6,6	M ²	5,0	M ²	8,6	δ M²
0,2 м/с	12 кВт	32 A	12 кВт	31 A	16 кВт	38 A	16 кВт	37 A	16 кВт	38 A
0,3 м/с	16 кВт	38 A	16 кВт	37 A	20 кВт	45 A	20 кВт	44 A	24 кВт	55 A
0,4 м/с	20 кВт	45 A	20 кВт	44 A	24 кВт	55 A	24 кВт	54 A	29 кВт	66 A
0,6 м/с	29 кВт	66 A	29 кВт	65 A	33 кВт	75 A	33 кВт	74 A	48 кВт	107 A
						1	7		/	

			3000	КГ.					3.50	00 кг.		
	5,8	M ²	8,6	M ²	10,6	M ²	6,6	M ²	8,6	M ²	12,6	M ²
0,2 м/с	16 кВт	38 A	20 кВт	45 A	20 кВт	45 A						
0,3 м/с	24 кВт	55 A	24 кВт	55 A	29 кВт	66 A	24 кВт	55 A	24 кВт	55 A	29 кВт	66 A
0,4 м/с	29 кВт	66 A	33 кВт	75 A								
0,6 м/с	48 кВт	107 A	48 кВт	107 A	58 кВт	129 A	48 кВт	107 A	48 кВт	107 A	58 кВт	129 A

						/		/ /			' . // //		///			
		4000 кг.					4300	KF.		4500 кг.						
	7,4	M ²	8,6	M ²	14,6	M ²	15,8	M ²	8,2	M ²	10,6	M ²	14,6	M ²	16,6	M ²
0,2 м/с	20 кВт	45 A	20 кВт	45 A	24 кВт	55 A	24 кВт	55 A								
0,3 м/с	29 кВт	66 A	29 кВт	66 A	29 кВт	66 A	33 кВт	75 A								
0,4 м/с	33 кВт	75 A	33 кВт	75 A	40 кВт	88 A	40 кВт	88 A	40 кВт	88 A	40 кВт	88 A	40 кВт	88 A	40 кВт	88 A

									///_/	/						
		5000 кг.							6000 кг.							
	9,0 м²		9,0 m ² 10,6 m ² 14,6 m ² 18,6 m ²		10,6 м²		14,6 m²		18,6 м²		22,6 м²					
0,2 м/с	24 кВт	55 A	24 кВт	55 A	24 кВт	55 A	24 кВт	55 A	24 кВт	55 A	24 кВт	55 A	29 кВт	66 A	29 кВт	66 A
0,3 м/с	29 кВт	66 A	29 кВт	66 A	33 кВт	75 A	29 кВт	66 A	29 кВт	66 A	3 3 кВт	75 A	33 кВт	75 A	40 кВт	88 A
0,4 м/с	40 кВт	88 A	40 кВт	88 A	40 кВт	88 A	48 кВт	107 A	48 кВт	107 A	48 кВт	107 A	58 кВт	129 A	58 кВт	129 A

2. Чертежи

2.1. Вертикальный разрез и вид сверху модели МDH

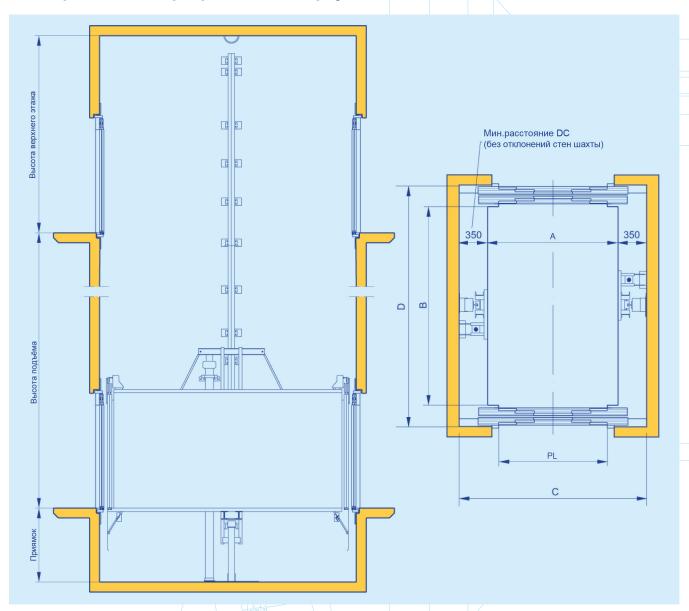


Рисунок 5: Данная модель лифта имеет прямой привод, и устанавливается только для шахт с указанным ниже диапазоном высоты подъема. Для указанного диапазона высоты подъема поставляется только эта модель лифта, а не МІН (не прямой привод). Эта модель более простая, чем МІН, т.к. не включает цепной привод, головки шкивов, ограничители скорости и направляющие цилиндров. Мы поставляем двери марки Wittur.

Высота подъема данного лифта определяется в зависимости от приямка и верхнего этажа. Поэтому, в зависимости от высоты верхнего этажа, существует две формулы:

Приямок	Верх.этаж ⁽¹⁾	Высота подъема
1100 мм ≤ Приямок ≤ 1800 мм	Верх.этаж ≤ 3650 мм	Высота подъема ≤ Приямок + Верх.этаж - 1000 мм
1100 ММ 211рияМОК 2 1000 ММ	Верх.этаж >3.650 мм	Высота подъема ≤ Приямок + 2650 мм

⁽¹⁾ Применяется, когда верх. этаж = высота кабины + 1120 мм. Обращайтесь за информацией относительно меньшей высоты верхнего этажа

Примечание: См. следующие страницы для остальных данных.

2.2. Вертикальный разрез модели МІН

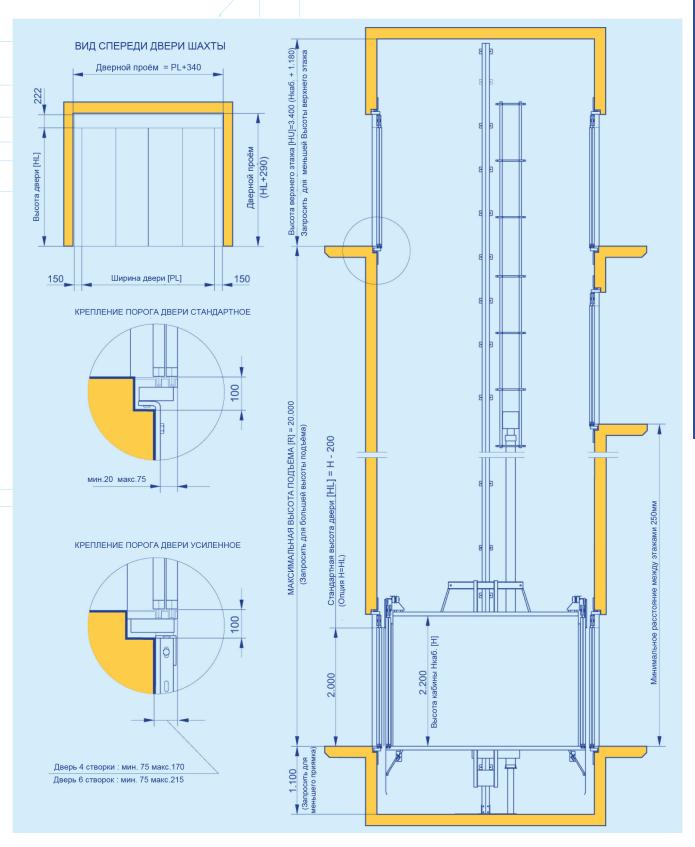
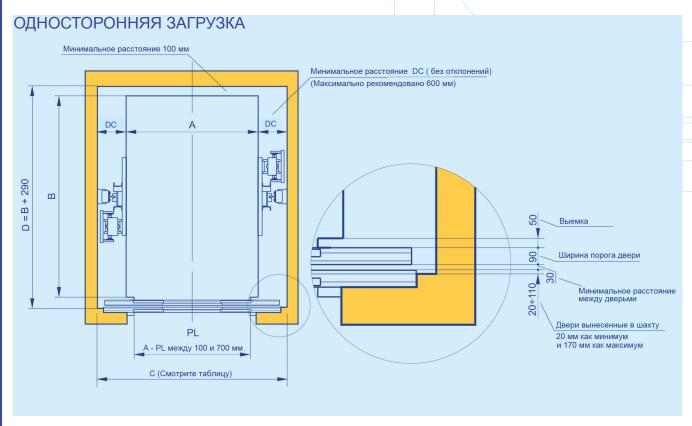
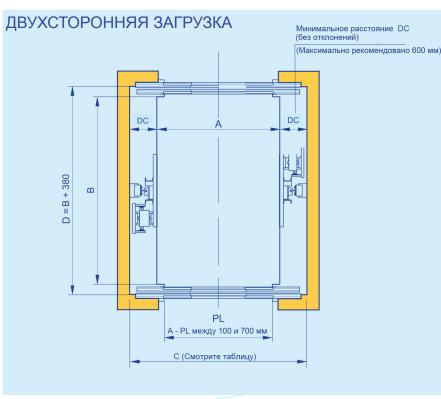
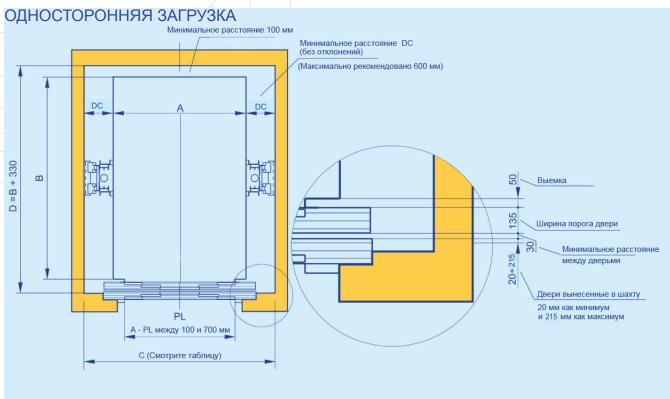




Рисунок 6: Пример стандартных размеров, с высотой кабины = 2200 мм. Мы поставляем двери марки Wittur.

2.3. Вид сверху модели МІН, с четырехстворчатыми дверями


С = Макс. значение, как результат расчета по следующим формулам:
а) A+2xDC
b) 1,5 PL+150 *
*(за исключением PL=1200, 1500, 1800 или 2400, для которых 1,5 PL+180)
PL = Свободный проход двери Как опция A=PL

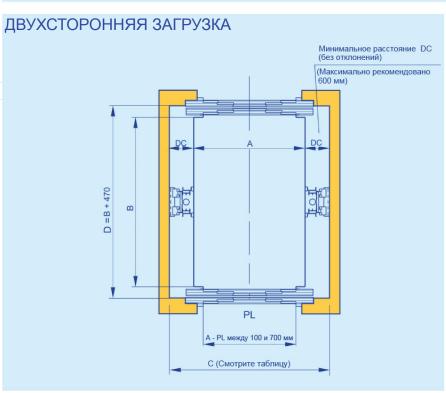

Диапазон нагрузки (кг)	Площадь (м²)	Отметка DC
1.500 - 4.000	≤ 14.6	400
4.500	≤ 14.6	400
4.500	>14.6, ≤ 16.6	500
5.000	>14.6, ≤ 18.6	500
6.000	≥ 10.6, ≤ 18.6	500
6.000	>18.6	500

Рисунок 7: Мин. размеры шахты (этаж). Центральное автоматическое управление 4 створками дверей в кабине. Автоматические двери с 4 створками, центрального открывания на этаже

2.4. Вид сверху модели МІН, с шестистворчатыми дверями

- С = Макс. значение, как результат расчета по следующим формулам:
 а) A+ 2xDC или
 b) 4/3 PL+150 *
 *(за исключением PL=1200, 1500, 1600, 1800, 2300, 2600 или 2700, для которых 4/3PL+200)
- PL = Свободный проход двери Как опция A=PL

Диапазон нагрузки (кг)	Площадь (м²)	Отметка DC
1.500 - 4.000	≤ 14.6	400
4.500	≤ 14.6	400
4.500	>14.6, ≤ 16.6	500
5.000	>14.6, ≤ 18.6	500
6.000	≥ 10.6, ≤ 18.6	500
6.000	>18.6	500

Рисунок 8: Мин. размеры шахты (этаж). Центральное автоматическое управление 6 створками дверей в кабине. Автоматические двери с 6 створками, открывающимися посередине, при остановке на этаже

2.5. Нагрузки на приямок

MDH

R

В

 $R_{a} = (P + Q^{*}) \cdot 9.8 \cdot 10^{-3}$

 $R_a = 2 \cdot (P + Q^*) \cdot 9.8 \cdot 10^{-3}$

MIH

 $R_{_{7}} = (P + Q^*) \cdot 9.8 \cdot 10^{-3}$

 $R_g = \frac{3}{2} \cdot (P + Q^*) \cdot 9.8 \cdot 10^{-3}$

* В случае грузового лифта для подъемных тележек (Q ≥ 4000 кг.)

Нагрузки (kN)

Q Ном. нагрузка (кг)

Макс. номинальная нагрузка и нагрузка, в соотв. с таблицей 1.1 нормы EN81-2 (кг)

Вес пустой кабины (кг).

Ширина кабины (мм)

Глубина кабины (мм)

Свободная высота кабины (мм)

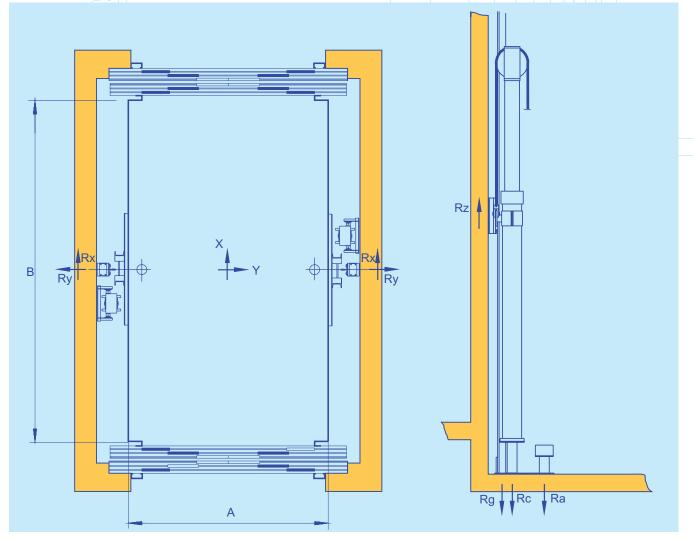
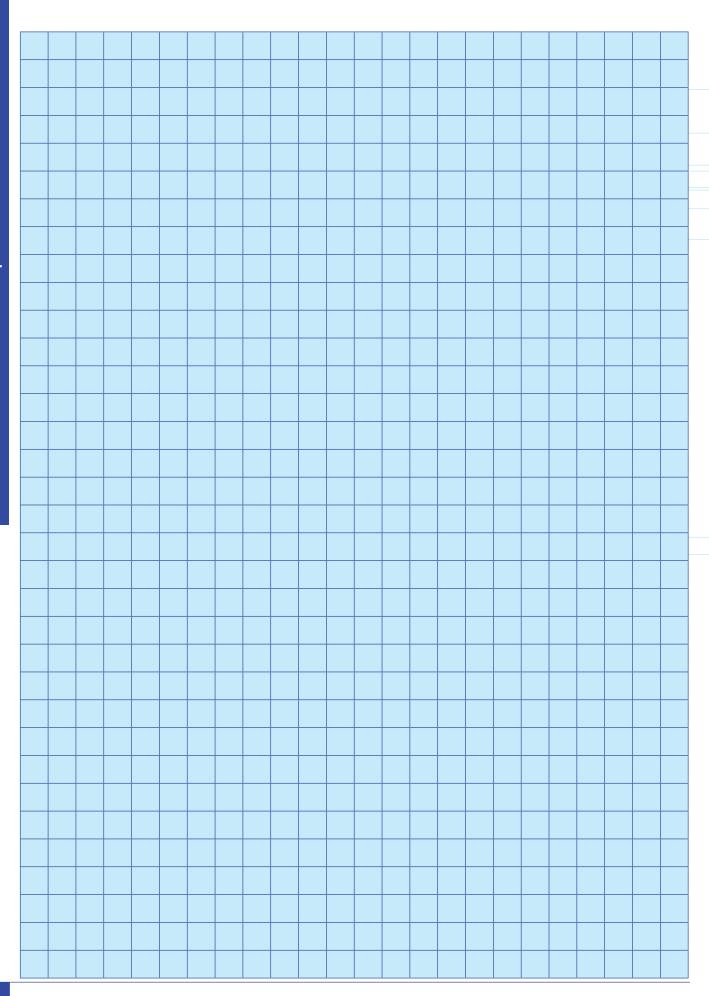



Рисунок 9: Схема нагрузок на шахту.

lом. нагрузка Q (кг)	Применение	S (M ²)	Р(кг)	Q*(кг)	
1.500	•	4.8	1.800	2.380	
2.000		4.2	1.700	2.000	
	•	6.6	2.200	3.550	
2.500		5.0	2.000	2.500	
	•	8.6	2.200	4.760	
3.000		5.8	2.100	3.000	
		8.6	2.300	4.760	
	•	10.6	3.000	6.000	
3.500		6.6	2.300	3.500	
		8.6	2.500	4.760	
		12.6	3.200	7.260	
4.000		7.4	2.400	4.000	
		8.6	2.600	4.760	
		14.6	3.400	8.500	
4.300		15.8	3.500	9.260	
4.500		8.2	2.500	4.500	
		10.6	3.000	6.000	
	•	14.6	3.400	8.500	
		16.6	3.700	9.750	
5.000		9.0	2.600	5.000	
		10.6	2.900	6.000	
	•	14.6	3,400	8.500	
		16.6	3.700	9.750	
6.000		10.6	2.900	6.000	dir.
	•	14.6	3.400	8.500	
	•	18.6	4.000	11.000	
		22.6	4,400	13.400	

HIDRAL, S. A. ЛИФТ АВТОМОБИЛЬНЫЙ/ГРУЗОВОЙ МОДЕЛИ MDH И MDH ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Версия 04 (28/01/13) Отпечатано в январе 2013 г.

© 2013 HIDRAL, S. A. Все права сохранены

Запрещается воспроизводить или передавать любую из частей данного документа, как электронным, так и механическим способом, для ее последующего использования без письменного разрешения HIDRAL, S. A.

HIDRAL, S. A.

Промышленный парк Парси, ул. Парси 7, № 3 41016 СЕВИЛЬЯ - ИСПАНИЯ

Тел.: +34 95 451 45 00 Факс: +34 95 467 76 33

Копирование документа запрещено

et-405

m